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NONEQUILIBRIUM QUANTUM PHENOMENA THROUGH THE VAN
DER POL MODEL

Van der Pol模型的非平衡量子现象

摘 要

Frank Wilczek在 2012年提出的时间晶体激起了物理学家们对在不同情况下打破时间平
移对称性的强烈兴趣。利用现代平台，如超导电路，我们的论文提出了利用 Van der Pol振
子在开放系统中实现时间晶体结构的方案。经典条件下的 Van der Pol振子在处于有限环相
时，存在典型的周期性振荡行为，这是正我们在量子系统中所追求的。首先，我们提出了

一种使用超导回路，基于下转换的搭建单个 Van der Pol振子的方法。通过解析方法和数值
研究我们证明了，量子涨落会导致单个 Van der Pol振子在有限时间内达到平衡，最终停留
在这个没有时间晶体结构的稳态。进一步，我们已知耦合的 Van der Pol晶格具有同步效应，
这直接启发了我们下一步的研究内容。我们定义相位的方差来表示系统对于时间晶体结构

的维持程度，较小的方差表明系统仍然保持时间晶体状态。我们通过精确的数值模拟和近

似的解析方法表明，对于一维、二维、三维和全耦合晶格，耦合效应抑制了方差增长。我们

还注意到，在耦合生效之前，所有这些系统都经历了一个初始方差增长阶段。对于耦合连通

性有限的系统（1D、2D和 3D），这种初始方差偏移与系统规模的正幂成正比。对于宏观系
统，这会最终消除他们的振荡行为。而数值模拟表示，全耦合系统具有一个与系统规模无关

的方差偏移。因此我们证明了，在宏观的全耦合系统中，对量子涨落具有鲁棒性的自维持振

荡存在。

关键词：非平衡统计、线性化、时间晶体
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NONEQUILIBRIUM QUANTUM PHENOMENA
THROUGH THE VAN DER POL MODEL

ABSTRACT

Frank Wilczek’s proposal of the time crystal in 2012 has been giving physicists strong in-
spirations to break time-translation symmetry under different circumstances. Taking advantage of
modern platforms such as superconducting circuits, our thesis propose an architecture making use
of Van der Pol oscillators to achieve time-crystalline order in an open system. Classically, Van der
Pol oscillators have oscillatory behaviors in a limit-cycle phase, which is what we pursuit quantum
mechanically. First, making use of the down-conversion process implementable on superconducting
circuits, we present a method to build a Van der Pol oscillator with superconducting circuits. Accord-
ing to both analytical and numerical study, we show that in finite time the quantum fluctuation lead
a single Van der Pol oscillator to equilibrium, which is a steady state without time-crystalline order.
Further on, it’s known that coupled Van der Pol lattice have synchronization effect, which inspires
our next investigation. We define phase variance to represent the maintenance of time-crystalline
order, which is kept when variance is small. We show by exact numerical simulations and approx-
imate analytical methods that, for 1D, 2D, 3D and all-to-all coupled lattices, the variance growth
is suppressed by the coupling effect. However, we also observe that all these systems experience
an initial variance growth stage before coupling come into effect. For systems with finite coupling
connectivity (1D, 2D and 3D), such initial variance grows to a value proportional to a positive power
of system’s size. For macroscopical systems, it will kill the oscillatory behavior eventually. In con-
trast, simulation shows all-to-all coupled system has a constant variance bias, independent from the
system size. Hence we prove the existence of spontaneous self-sustained oscillations that are robust
against quantum fluctuations, in a macroscopical all-to-all coupled system.

Key words: Nonequilibrium statistics, Linearization, Time crystal
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Chapter 1 Introduction

Modern platforms such as superconducting circuits allow us to implement many-body models
that include driving and dissipation. Nowadays, with quantum optical techniques, it is possible for
physicists to precisely control each mode in the many-body model. It will enable us to reach phases
of matter that are difficult to reach in real materials and explore new physics. In this thesis, we focus
on the time-crystalline order and manage to construct such elusive phase of matter with coupled Van
der Pol lattices.

Wilczek proposed the concept of time crystal in 2012[1-2], which is a system self-organizing
in time that breaks time-translational symmetry spontaneously. However, Watanabe et al. proved
the absence of time-crystals in a closed system[3], dominated by a Hamiltonian. Fortunately, this
no-go theorem is proven under very restrictive conditions, and inspired by Wilczek’s original ideas,
researchers have explored different possible ways out. The simplest one is when the Hamiltonian
has a constant of motion, such that, even at equilibrium, the system might be forced to oscillate
in order to satisfy the corresponding constraint (this is what happens with superfluid time crystals,
which oscillate at a frequency proportional to the chemical potential[4]). Another popular way out[5]

has consisted on driving periodically the system, such that now it is only invariant under discrete
time-translational invariance, a symmetry that can indeed be spontaneously broken. Finally, coming
back to continuous time-translational symmetry breaking, people have also studied the possibility
of using open systems[6], which being out of equilibrium, do not need to satisfy the no-go theorem.
So far, however, there is no completely satisfactory open model leading to robust time-crystalline
order in the quantum regime. It is in this last context where our study takes place.

The basic model we apply is the quantum Van der Pol oscillator, a simple particle-non-
conservative system with incoherent pumping and non-linear damping. Classically, the Van der
Pol system[7] evolve in limit cycles in certain condition, which results in deterministic chaos[8]. Lee
et al.[9] introduced a method to construct a quantum Van der Pol oscillator with trapped ions. In
such a quantum system, the fluctuations destroy the classical limit cycles, and the system reaches a
steady state[10]. When coupled together, both classical and quantum Van der Pol oscillators in this
phase display synchronization and phase lock phenomena effect[9, 11-12]. Most works study all-to-all
coupled lattices[13-14], and showing the synchronization phase transition with mean field method and
considering only classical fluctuations.

In this thesis, we first propose an architecture to implement a quantum Van der Pol oscillator,
as well as a coupled Van der Pol lattice, by exploiting the down-conversion process available in
superconducting circuits[15]. We study under which circumstances this system maintains a state that
has time-crystalline behavior, that is, oscillatory behavior, which should be robust against quantum
fluctuations. According to both analytical and numerical study, we show that, in finite time, the
quantum noise lead a single Van der Pol oscillator to losing time-crystalline order. It will only
be achieved in the classical limit, with infinite number of excitations, which is impossible in any
physical systems.

– Page 1 of 39 –
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Based on the idea that coupled Van der Pol model displays phase-lock phenomena, we then
analyze the coupled Van der Pol lattices for their ability to resist quantum fluctuations in the non-
equilibrium processes. With exact numerical simulations for 1D, 2D, 3D and all-to-all coupled
lattice and approximate analytical methods for 1D, we show that after a certain time, all of the
coupled systems are capable of reaching a phase where the effect of quantum fluctuations is halted.
We find the variance, which determines the time-crystalline order if kept small, is suppressed by
a factor proportional to the lattice size. For a macroscopical lattice, the quantum fluctuations are
frozen by coupling effect. However, we also find that the system experiences an initial variance
growth. For 1D, 2D and 3D lattices, such initial variance end up scaling with a positive power of
the lattice size, which means that by the time the quantum fluctuations are suppressed, the time-
crystalline order is already lost. This is not the case for the all-to-all coupled model, whose initial
variance is a constant independent of the system size. As a result, time crystalline order is achieved
in a finite time for a large all-to-all coupled system.

– Page 2 of 39 –
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Chapter 2 Preliminaries and background

2.1 Open quantum systems
A closed quantum system can be fully described by a Hamiltonian 𝐻̂ , with Schrödinger equa-

tion 𝑖ℏ∂𝑡 ̂𝜌 = [𝐻̂, ̂𝜌]. However, in the real world, systems are rarely closed, but open. These systems
interact with other ones, which experimentalists do not have access to, generally dubbed, ’environ-
ment’. In our thesis, the Van der Pol system is an open system with non-linear dissipation.

We will now introduce one of the description of the open quantum systems, master equations.
Here is an example of a simplest quantum system. Consider a closed system consisted of a cavity
mode ̂𝑎 and an external field, described by a continuous set ̂𝑏(𝜔), interacting. These annihilation
operators satisfy canonical commutation relationships [ ̂𝑎, ̂𝑎†] = 1 and [ ̂𝑏(𝜔), ̂𝑏†(𝜔′)] = 𝛿(𝜔 − 𝜔′).
Any other combination of operators commute. Tracing the external mode off later, the cavity mode 𝑎
can be regarded as a typical open system. Before doing that, we first focus on the composite system,
described by a Hamiltonian 𝐻̂ = 𝐻̂𝑐𝑎𝑣 + 𝐻̂𝑒𝑥𝑡 + 𝐻̂𝑖𝑛𝑡, where

𝐻̂𝑐𝑎𝑣 = ℏ𝜔𝑐 ̂𝑎† ̂𝑎,

𝐻̂𝑒𝑥𝑡 = ∫
∞

0
𝑑𝜔ℏ𝜔 ̂𝑏†(𝜔) ̂𝑏(𝜔),

𝐻̂𝑖𝑛𝑡 = 𝑖ℏ√
𝛾
𝜋 ∫

∞

0
𝑑𝜔 [ ̂𝑏(𝜔)† ̂𝑎 − ̂𝑏(𝜔) ̂𝑎†] .

(2–1)

√𝛾/𝜋 is a coupling constant. This interaction Hamiltonian is written under several assumptions:
there are no non-linear optical effects; the contribution from the coupling medium (for example, a
half-transmitted mirror) to the Hamiltonian is quadratic in annihilation and creation operators; the
interaction is perturbative; and finally, the mirror’s transmissivity is independent of 𝜔.

Now we assume the external state ̂𝜌𝑒𝑥𝑡 is a displaced thermal state, which is general enough for
an environment. It has the displacement 𝛼(𝜔), and thermal photon number ̄𝑛.

First, we move the external field to a displaced picture, and it will take the external field to a
thermal state. Also, the initial Hamiltonian gets a new term 𝐻̂𝑖𝑛𝑗 , representing the displacement, or
laser driving:

𝐻̂𝐷 = 𝐻̂𝑐𝑎𝑣 + 𝐻̂𝑒𝑥𝑡 + 𝐻̂𝑖𝑛𝑡 + 𝐻̂𝑖𝑛𝑗 ,
where 𝐻̂𝑖𝑛𝑗 = 𝑖ℏ [𝒜(𝑡) ̂𝑎† − 𝒜∗(𝑡) ̂𝑎]

and 𝒜 = −√𝛾/𝜋 ∫
∞

−∞
𝑑𝜔𝑒𝑖𝜔𝑡𝛼(𝜔).

(2–2)

Using 𝑈̂𝑐 = 𝑒−𝑖𝜔𝑐 ̂𝑎† ̂𝑎+ℬ(𝑡) ̂𝑎†−ℬ∗(𝑡) ̂𝑎𝑒−𝑖 ∫∞
−∞ 𝑑𝜔𝜔𝑏̂†(𝜔)𝑏̂(𝜔), we move to the interaction picture, and here

ℬ(𝑡) = ∫𝑡
0 𝑑𝑡′𝒜(𝑡′). Now we have removed all rotation and displacement into the operators: ̂𝜌𝐼 =

𝑈̂ †
𝑐 ̂𝜌𝑈̂𝑐 and ̂𝑎𝐼 = 𝑈̂ †

𝑐 ̂𝑎𝑈̂𝑐 . Our Hamiltonian becomes:

𝐻̂𝐼 (𝑡) = 𝑖ℏ√
𝛾
𝜋 ∫

+∞

−∞
𝑑𝜔 [𝑒𝑖𝜔𝑡 ̂𝑏†(𝜔) ̂𝑎𝐼 (𝑡) − 𝑒−𝑖𝜔𝑡 ̂𝑏(𝜔) ̂𝑎†

𝐼 (𝑡)] (2–3)

– Page 3 of 39 –
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To simplify equation (2–3), the theory makes these approximations: ̂𝜌𝐼 (𝑡) is always close to
̂𝜌𝑐𝑎𝑣,𝐼 (𝑡) ⊗ ̂𝜌𝑒𝑥𝑡,𝐼 (𝑡) in first order; there is no back reaction; it can be approximated in second order.

Finally, after tracing out ̂𝑏 and move back to the Schrödinger picture, we arrive a general result for
an open system:

∂𝑡 ̂𝜌𝑐𝑎𝑣 = 1
𝑖ℏ [𝐻̂𝑆 , ̂𝜌𝑐𝑎𝑣] + ( ̄𝑛 + 1)𝛾𝒟 ̂𝑎[ ̂𝜌𝑐𝑎𝑣] + ̄𝑛𝛾𝒟 ̂𝑎†[ ̂𝜌𝑐𝑎𝑣],

where 𝐻̂𝑆 = 𝐻̂𝑐𝑎𝑣 + 𝐻̂𝑖𝑛𝑗 ,
and 𝒟 ̂𝐽 [ ̂𝜌0] = 2 ̂𝐽 ̂𝜌0 ̂𝐽 † − ̂𝐽 † ̂𝐽 ̂𝜌0 − ̂𝜌0 ̂𝐽 † ̂𝐽 .

(2–4)

Remind ̄𝑛 is the expectation of ̂𝑏† ̂𝑏 of the external state. This equation is know as the master equation
with two kinds of terms. The first one is the familiar Hamiltonian term, Hermitian. The other
ones are superoperators, specifically called Lindbladian 𝒟 ̂𝐽 [ ̂𝜌], defining the non-Hermitian quantum
jump. These terms combine into ∂𝑡 ̂𝜌 = ℒ[ ̂𝜌], where the generator of dynamics ℒ is known as
Liouville superoperators, or Liouvillian.

2.2 Effective theory: eliminating spurious degrees of freedom
When we studying practical models, we always use effective theory to eliminate some degrees

of freedom and focus on a relevant system we need. There are theories for both closed systems
and open ones, and now we will introduce the projection superoperators method for eliminate the
irrelevant part from an open system. For simplicity, we call the relevant part ”system” and the
irrelevant part ”environment”. We can separate the total Hilbert space by defining ℋ = ℋ𝑆 ⊗ ℋ𝐸 .

An open system can be described by a master equation as we mentioned in 2.1, and now we
give a very general form of it:

∂𝑡 ̂𝜌 = ℒ[ ̂𝜌]. (2–5)

The Liouvillian consists of all kinds of Hermitian terms and non-Hermitian terms. Then we divide
it into two kinds: free Liouvillian ℒ0 and interaction Liouvillian ℒ1. ℒ0 only contains the terms that
do not connect system and environment, and vice versa. Free Liouvillian can be easily written with
two parts: free system’s and free environment’s by ℒ0 = ℒ𝑆 + ℒ𝐸 .

We need two projection superoperators to map from ℋ to ℋ𝑆 . They are defined in (2–6)

𝒫 + 𝒬 = 1, 𝒫ℒ0𝒬 = 𝒬ℒ0𝒫 = 0 and 𝒫ℒ1𝒫 = 0 (2–6)

𝒫 has the property 𝒫[ ̂𝜌] = trE{ ̂𝜌} ⊗ ̄𝜌E, where ℒE [ ̄𝜌E] = 0. With second order approximation
and 𝒬[ ̂𝜌(0)] = 0, a dynamic equation for 𝒫[ ̂𝜌] can be derived by integrating a dynamic equation for
𝒫[ ̂𝜌]:

∂𝑡𝒫[ ̂𝜌] ≈ 𝒫ℒ0𝒫[ ̂𝜌] + ∫
𝑡

0
𝑑𝜏𝒫ℒ1𝑒ℒ0𝜏ℒ1𝒫[ ̂𝜌(𝑡 − 𝜏)] (2–7)

Moreover, we assume that the interaction Liouvillian can be described by a Hamiltonian:

ℒ1[ ̂𝑌 ] = [
𝐻̂1
iℏ , ̂𝑌 ] , where 𝐻̂1/ℏ =

𝑀

∑
𝑚=1

𝑔𝑚 ̂𝑆𝑚 ⊗ ̂𝐸𝑚 (2–8)
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Mow the integration in Eq. (2–7) becomes

𝑀

∑
𝑚,𝑛=1

𝑔𝑚𝑔𝑛 ( ̂𝑆𝑛𝑒𝐶𝑚𝑛(𝜏)ℒS𝜏 [ ̂𝜌S(𝑡 − 𝜏) ̂𝑆𝑚]

−𝐾𝑛𝑚(𝜏) ̂𝑆𝑛𝑒ℒS𝜏 [ ̂𝑆𝑚 ̂𝜌S(𝑡 − 𝜏)]) + H.c.

(2–9)

where 𝐶𝑚𝑛 and 𝐾𝑛𝑚 are two-time correlators using quantum regression theorem.

𝐶𝑚𝑛(𝜏) = trE { ̂𝐸𝑛𝑒ℒE𝜏 [ ̄𝜌E ̂𝐸𝑚]} = lim
𝑡→∞ ⟨ ̂𝐸𝑚(𝑡) ̂𝐸𝑛(𝑡 + 𝜏)⟩E

𝐾𝑛𝑚(𝜏) = trE { ̂𝐸𝑛𝑒ℒE𝜏 [ ̂𝐸𝑚 ̄𝜌E]} = lim
𝑡→∞ ⟨ ̂𝐸𝑛(𝑡 + 𝜏) ̂𝐸𝑚(𝑡)⟩E

(2–10)

Finally, we assume the correlators are either zero or a fast decay in time, then the system is
mainly dominated by ℒ𝑆 . If ℒ𝑆 [ ̂𝜌] = 𝑖ℏ [𝐻̂𝑆 , ̂𝜌], the effective time-local master equation can reads

∂𝑡 ̂𝜌S ≈ ℒS [ ̂𝜌S] +
𝑀

∑
𝑚=1

𝑔𝑚𝑔𝑛 ∫
𝑡

0
𝑑𝜏 [ 𝐶𝑚𝑛(𝜏) ̂𝑆𝑛 ̂𝜌S(𝑡) ̃𝑆𝑚(𝜏)

−𝐾𝑛𝑚(𝜏) ̂𝑆𝑛 ̃𝑆𝑚(𝜏) ̂𝜌S(𝑡)] + H.c.

(2–11)

2.3 Phase space representations
In quantum mechanics, position and momentum don’t commute, and their observables can’t

take definite values. What we can do is describing the probability distribution for 𝑋 and 𝑃 , or 𝛼 in
a complex plane.

2.3.1 Different phase-space representations
A general definition for such probability distribution is

𝐹 𝑧
𝜌 (𝛼) = ∫ℂ

1
𝜋 𝑒𝛽∗𝛼−𝛽𝛼∗𝜒𝑧

𝜌 (𝛽)d2𝛽,

𝜒𝑧
𝜌 (𝛽) = tr{ ̂𝜌𝐷̂𝑧(𝛽)} , where 𝐷̂𝑧(𝛽) = 𝑒𝑧||𝛽||2/2𝑒𝛽 ̂𝑎†−𝛽∗ ̂𝑎.

(2–12)

In (2–12), 𝑧 can be chosen from −1, 0 and 1. Different 𝑧 will give a different phase space represen-
tation:

𝑧 = −1: Husimi function[16];

𝑧 = 0: Wigner function[17];

𝑧 = 1: Glauber-Sudarshan representation[18].

(2–13)

2.3.2 Fokker-Planck and Langevin equations
To investigate an open system in phase space, we introduce two types of dynamic equations:

Fokker-Planck equation and stochastic Langevin equation. They are equivalent to each other and
can represent a quantum system according to a master equation.
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(1) Fokker-Planck equation
Here 𝑃 (x, 𝑡) is a time-dependent probability distribution for x, a vector of variables with length

𝑁 . The Fokker-Planck equation takes the form:

∂𝑡𝑃 (x, 𝑡) =
⎡⎢⎢⎣
−

𝑁

∑
𝑗=1

∂𝑗A𝑗(x) + 1
2

𝑁

∑
𝑗,𝑙=1

∂𝑗∂𝑙𝒟𝑗𝑙(x)
⎤⎥⎥⎦

𝑃 (x, 𝑡), (2–14)

where 𝒟(x) ≥ 0 and 𝒟(x) = 𝒟𝑇 (x). As 𝑃 (x, 𝑡) is a probability distribution, the average of an
observable 𝑓(x) is

⟨𝑓(x)⟩ = ∫ℂ𝑁
𝑃 (x, 𝑡)𝑓 (x)d𝑁x. (2–15)

(2) Stochastic Langevin equation
There is also a stochastic approach of writing a dynamic equation in phase space, which is

simpler for numerical simulation. For a vector x, the equation reads

∂𝑡x = A(x) + ℬ(x)𝜼(𝑡), (2–16)

whereA(x) is a vector and ℬ(x) is a gaussian noise matrix. 𝜼 is a real noise vector, whose component
satisfy 𝜂𝑗(𝑡) = 0 and 𝜂𝑗(𝑡)𝜂𝑙(𝑡′) = 𝛿𝑗𝑙𝛿(𝑡 − 𝑡′). Here the overline represents stochastic average,
which takes average of infinite trials. The stochastic noises are more rigorously defined with Wiener
increment, whose introduction can be found in Schaffter et al.[19].

(3) Equivalence of two methods
It is possible to prove that Fokker-Planck and Langevin averages are equivalent, according to

the connection
Fokker-Planck Eq. Langevin Eq.

A; 𝒟 = ℬℬ𝑇 ⇔ A; ℬ
(2–17)

2.3.3 Positive P representation
Choosing 𝑧 = 1 in (2–12) gives us the Glauber-Sudarshan P representation. For quantum

systems, it generally leads 𝒟 to be not positive semi-definite. To solve this problem, it is generalized
to the so-called positive P representation, which introduces two independent complex variables for
one mode, 𝛼 and 𝛼+. It is different from the standard Glauber-Sudarshan P representation, which
depends on a single complex variable 𝛼. Master equation can be simply transformed to a equivalent
Fokker-Planck equation and then we can obtain a stochastic equation for numerics. Let us introduce
this more formally.

For a single mode system, x = (𝛼, 𝛼+)𝑇 , we define the probability distribution 𝑃 +
𝜌 by

𝜒+
𝜌 (𝛽, 𝛽+) = tr{ ̂𝜌𝑒𝛽 ̂𝑎†𝑒−𝛽+𝛼̂

}

= ∫ℂ2
𝑒𝛽𝛼+−𝛽+𝛼𝑃 +

𝜌 (𝛼, 𝛼+).
(2–18)
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With this representation, observables ⟨ ̂𝑎†𝑚 ̂𝑎𝑛⟩ can be calculated by

⟨ ̂𝑎†𝑚 ̂𝑎𝑛⟩ = (−1)𝑛∂𝑚
𝛽 ∂𝑛

𝛽+𝜒+
𝜌 (𝛽, 𝛽+)|𝛽,𝛽+=0

= ∫ℂ2
𝑃 +

𝜌 (𝛼, 𝛼+)𝛼+𝑚𝛼𝑛d2𝛼d2𝛼+
(2–19)

To retrieve the state ̂𝜌, we can follow Eq. (2–20)

̂𝜌 = ∫ℂ2
𝑃 +

𝜌 (𝛼, 𝛼+) |𝛼⟩ ⟨𝛼+∗|
⟨𝛼+∗|𝛼⟩ d2𝛼d2𝛼+ (2–20)

With above properties, a transformation rule from master equation for Fokker-Planck equa-
tion is introduced in (2–21). For a master equation ∂𝑡 ̂𝜌 = ℒ[ ̂𝜌] and a Fokker-Planck equation
∂𝑡𝑃 +

𝜌 (𝛼, 𝛼+) = 𝐹 (𝛼, 𝛼+)𝑃 +
𝜌 (𝛼, 𝛼+), a map from ℒ to 𝐹 (𝛼, 𝛼+) reads

ℒ F(𝛼, 𝛼+)
̂𝑎 ̂𝜌 ⇔ 𝛼
̂𝜌 ̂𝑎 ⇔ 𝛼 − ∂𝛼+

̂𝑎† ̂𝜌 ⇔ 𝛼+ − ∂𝛼
̂𝜌 ̂𝑎† ⇔ 𝛼+

(2–21)

Terms in master equation can be added and multiplied. For example, if 𝑀̂ = ̂𝜌 ̂𝑎† ̂𝑎, then 𝐹 =
(𝛼 − ∂𝛼+)𝛼+.

After transformingmaster equation to a Fokker-Planck equation, the last step is applying (2–17)
and obtaining a stochastic Langevin equation.

2.3.4 Stochastic simulation
Here we show a simple numerical method to integrate the stochastic equation, the mid-point

integral method. We will explains it with the example of integrateW(𝑇 ) = ∫𝑇
0 𝑓(W(𝑡), 𝑡)𝑑𝑡. At time

𝑡, the next increment over time interval 𝛥𝑡 is calculated by:

W𝑚𝑖𝑑 = W(𝑡) + 𝑓(W(𝑡), 𝑡)𝛥𝑡
2

W(𝑡 + 𝛥𝑡) = W(𝑡) + 𝑓 (W𝑚𝑖𝑑 , 𝑡 + 𝛥𝑡
2 ) 𝛥𝑡

(2–22)

The stochastic variable in 𝑓(W(𝑡), 𝑡) are generated by pseudorandom algorithms at each iteration.
Also, the time interval is determined automatically by keeping each term in 𝑓(W(𝑡), 𝑡) lower than
min(0.1W(𝑡)). Setting a initial value and doing the iterative addition, we can get a final result. To
obtain a statistical result, we need to perform this integration repeatedly, typically, for 2000 times.
Then the stochastic average for observables can be performed.

2.4 Floquet method
In our research, we need to treat a periodically time-dependent differential equation, which is a

linearized stochastic Langevin equation. Floquet theory was mainly proposed by Gaston Floquet[20],
which has the power to solve this kind of problems. Consider a stochastic equation for x(𝑡) of length
𝐷:

dx(𝑡)
d𝑡 = ℒ(𝑡)x(𝑡) + ℬ(𝑡)𝝃(𝑡), (2–23)
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where ℒ(𝑡) (shape: 𝐷 × 𝐷) and ℬ(𝑡) (shape: 𝐷 × 𝑁) are periodical matrix with period 𝑇 . 𝜉(𝑡) is a
real stochastic vector of length 𝑁 .

To solve it, we first define a principal fundamental matrix ℱ(𝑡) by

dℱ(𝑡)
d𝑡 = ℒ(𝑡)ℱ(𝑡), and ℱ(0) = ℐ. (2–24)

It’s also called the propagator. In one period 𝑇 , we construct a displacement matrix by 𝑒ℳ𝑇 = ℱ(𝑇 ),
and then counteract it in ℱ(𝑡):

𝒫(𝑡) = ℱ(𝑡)𝑒−ℳ𝑡. (2–25)

From (2–25) we obtain the Floquet normal form 𝒫(𝑡), which is also a T-periodical matrix. Then we
perform a variable change s(𝑡) = 𝒫−1(𝑡)x(𝑡), making Eq. (2–23) turns to

ds(𝑡)
d𝑡 = ℳs(𝑡) + 𝒫−1(𝑡)ℬ(𝑡)𝝃(𝑡), (2–26)

by which we obtain a simple equation with a time-independent drifting term. We can normally solve
it by diagonalizing ℳ.

But in this thesis, we will focus on the Floquet eigenvectors p𝑗 and q†
𝑗 only, which is defined by

ℳv𝑗 = 𝜇𝑗v𝑗 , and p𝑗(𝑡) = 𝒫(𝑡)v𝑗

w†
𝑗 ℳ = 𝜇𝑗w†

𝑗 , and q†
𝑗 (𝑡) = w†

𝑗 𝒫−1(𝑡)
(2–27)

Note that in a physical system, all eigenvalues 𝜇𝑗 have negative real parts, except 𝜇0, which equals
to zero. p𝑗 and q†

𝑗 also satisfy orthogonality condition q†
𝑗 (𝜏)p𝑙(𝜏) = 𝛿𝑗𝑙.
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Chapter 3 Implementation of the Van der Pol model with
superconducting circuits

3.1 Architecture with superconducting circuits
Classically, a Van der Pol system is a non-conservative oscillator with non-linear damping

proposed by Van der Pol[7]. In this section, we give a general version of a quantum Van der Pol
model in (3–1) and manage to construct it with superconducting circuits.

∂𝑡 ̂𝜌 = −𝑖 [𝛥 ̂𝑎† ̂𝑎 + (𝜖 ̂𝑎† + 𝐻.𝑐.) , ̂𝜌] + 𝛾𝒟 ̂𝑎†[ ̂𝜌] + 𝜅𝒟 ̂𝑎2[ ̂𝜌] (3–1)

Here 𝛥 is the detuning between the driving frequency and the intrinsic one, and 𝜖 is the driving
amplitude. As shown in the master equation, apart from the conventional Hamiltonian part, the
Van der Pol model contains a incoherent pumping and two-photon dissipation of rates 𝛾 and 𝜅,
respectively.

To implement the Van der Pol model, we propose a multi-mode generalization of the Asymmet-
rically Threaded SQUID (ATS) system introduced by Lescanne et al.[15]. Its generalized Hamilto-
nian has a third-order coupling term 𝜖(𝑡) (∑𝑁

𝑗=1 𝜑̂𝑗)
3
, with which we can achieve down-conversion

on multiple modes and get two-photon loss.

Figure 3–1 The construction of a Van der Pol oscillator.

We coupled an ATS circuit and 3 cat modes to build our model in Figure 3–1, and finally the
whole system will behave as a Van der Pol oscillator with down conversion. These modes are named
from 𝑎1 to 𝑎4, and 𝑎1 is an ATS mode. For each of the mode 𝑎𝑗 , its frequency is 𝜔𝑗 . They are all
open systems coupled with the environment at 0𝐾 . Also, we drive 𝑎1 and 𝑎4 with frequency 𝜈1 and
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𝜈4. This four-wave mixing system is described by the master equation:

∂𝑡 ̂𝜌 = −𝑖[𝐻̂0, ̂𝜌] +
4

∑
𝑗=1

𝛾𝑗𝒟 ̂𝑎𝑗 [ ̂𝜌],

where 𝐻̂0 =
4

∑
𝑗=1

𝜔𝑗 ̂𝑎†
𝑗 ̂𝑎𝑗 + 2𝐸𝐽 𝜖0

⎡
⎢
⎢
⎣

4

∑
𝑗=1

𝜑̂𝑗 − 1
6

⎛
⎜
⎜
⎝

4

∑
𝑗=1

𝜑̂𝑗
⎞
⎟
⎟
⎠

3⎤
⎥
⎥
⎦

+ (𝜖1𝑒−𝑖𝜈1𝑡 ̂𝑎†
1 + 𝜖4𝑒−𝑖𝜈4𝑡 ̂𝑎†

4 + 𝐻.𝑐.) .

(3–2)

To successfully realize down conversion, we manually select 𝜔3 ≈ 2𝜔1, 𝜔4 ≈ 𝜔1 +𝜔2, 𝜈1 ≈ 𝜔1
and 𝜈4 ≈ 𝜔4.

3.2 Effective single-mode system
In this section, we will prove that this four-mode system behaves effectively as a Van der Pol

oscillator.

3.2.1 Change of pictures
Wefirst cancel the driven term in the Hamiltonianwith a time-independent displacement 𝐷̂𝑗,0 =

𝑒𝛼𝑗,0 ̂𝑎†
𝑗 −𝛼∗

𝑗,0 ̂𝑎𝑗 for each ̂𝑎𝑗 . To fully eliminate the stable ̂𝑎𝑗 terms, we choose 𝛼𝑗,0 = 2𝐸𝐽 𝜖0/(𝜔𝑗 − 𝑖𝛾𝑗).
The state ̂𝜌𝐷,0 = 𝐷̂†

𝑗,0 ̂𝜌𝐷̂𝑗,0 in the new picture evolves according to the master equation:

∂𝑡 ̂𝜌𝐷,0 = −𝑖[𝐻̂𝐷,0, ̂𝜌𝐷,0] +
4

∑
𝑗=1

𝛾𝑗𝒟 ̂𝑎𝑗 [ ̂𝜌𝐷,0],

where 𝐻̂𝐷,0 =
4

∑
𝑗=1

𝜔𝑗 ̂𝑎†
𝑗 ̂𝑎𝑗 + 1

3𝐸𝐽 𝜖0
⎡⎢⎢⎣

4

∑
𝑗=1

(𝜑𝑗 ̂𝑎𝑗 + 𝜑𝛼𝑗,0 + 𝐻.𝑐.)
⎤⎥⎥⎦

3

+ (𝜖1𝑒−𝑖𝜈1𝑡 ̂𝑎†
1 + 𝜖4𝑒−𝑖𝜈4𝑡 ̂𝑎†

4 + 𝐻.𝑐.) .

(3–3)

The rotating displacement has not been eliminated in this step.
With 𝜔𝑗 much larger than any other parameters, we can move to a rotating frame and use

rotating wave approximation to eliminate the high-frequency terms. The transformation we use is
𝑈̂𝑅 = 𝑒−𝑖[𝜈1 ̂𝑎†

1 ̂𝑎1+(𝜈4−𝜈1) ̂𝑎†
2 ̂𝑎2+2𝜈1 ̂𝑎†

3 ̂𝑎3+𝜈4 ̂𝑎†
4 ̂𝑎4], so that ̂𝜌𝑅 = 𝑈̂ †

𝑅 ̂𝜌𝐷,0𝑈̂𝑅 evolves according to the master
equation:

∂𝑡 ̂𝜌𝑅 = −𝑖[𝐻̂𝑅, ̂𝜌𝑅] +
4

∑
𝑗=1

𝛾𝑗𝒟 ̂𝑎𝑗 [ ̂𝜌𝑅],

where 𝐻̂𝑅 =
4

∑
𝑗=1

𝛥𝑗 ̂𝑎†
𝑗 ̂𝑎𝑗 + (𝜖1 ̂𝑎1 + 𝜖4 ̂𝑎4 + 𝑔3 ̂𝑎3 ̂𝑎†2

1 + 𝑔4 ̂𝑎4 ̂𝑎†
1 ̂𝑎†

2 + 𝐻.𝑐.)

(3–4)

Here 𝛥𝑗 is the detuning between inherent frequency and driving frequency: 𝛥1 = 𝜔1 − 𝜈1, 𝛥2 =
𝜔2 + 𝜈1 − 𝜈4, 𝛥3 = 𝜔3 − 2𝜈1 and 𝛥4 = 𝜔4 − 𝜈4. We have also defined the down-conversion
rates: 𝑔3 = 𝐸𝐽 𝜖0𝜑3𝜑∗2

1 and 𝑔4 = 2𝐸𝐽 𝜖0𝜑4𝜙∗
1𝜑∗

2. After rotating wave approximation, the coupling
terms clearly shows that down conversion happens. Term ̂𝑎3 ̂𝑎†2

1 means that a photon in mode 𝑎3 can
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transmit into 𝑎1’s two photons, and similarly, term ̂𝑎4 ̂𝑎†
1 ̂𝑎†

2 means one annihilation in mode 𝑎4 will
result in creation in both 𝑎1 and 𝑎2.

For this rotating frame, we finally eliminate the rotating displacement for ̂𝑎4. Using transfor-
mation 𝑈̂𝐷 = 𝑒𝛼4 ̂𝑎4−𝐻.𝑐. and 𝛼4 = 𝜖4/(𝛥4 − 𝑖𝛾4), we move to the final picture, where ̂𝜌𝐷 = 𝑈̂ †

𝐷 ̂𝜌𝑅𝑈̂𝐷
evolves as:

∂𝑡 ̂𝜌𝐷 = −𝑖[𝐻̂𝐷, ̂𝜌𝐷] +
4

∑
𝑗=1

𝛾𝑗𝒟 ̂𝑎𝑗 [ ̂𝜌𝐷],

where 𝐻̂𝐷 =
4

∑
𝑗=1

𝛥𝑗 ̂𝑎†
𝑗 ̂𝑎𝑗 + (𝜖1 ̂𝑎1 + 𝑔3 ̂𝑎3 ̂𝑎†2 + 𝑔4 ̂𝑎4 ̂𝑎†

1 ̂𝑎†
2 + 𝑔4𝛼4 ̂𝑎†

1 ̂𝑎†
2 + 𝐻.𝑐.) .

(3–5)

3.2.2 Eliminate ̂𝑎3 and ̂𝑎4

We tune 𝛾4 and 𝛾3 larger than other parameters, result in 𝑎3 and 𝑎4 cooled by the environment.
We can treat them as irrelevant modes and use effective theory in Section 2.2 to eliminate them. We
separate the master equation ∂𝑡 ̂𝜌𝐷 = ℒ[ ̂𝜌𝐷] into ℒ = ℒ0 + ℒ1 = ℒ𝑆 + ℒ𝐸 + ℒ1, and

ℒ𝑆 [ ̂𝜌𝐷] = − 𝑖 [𝛥1 ̂𝑎†
1 ̂𝑎1 + 𝛥2 ̂𝑎†

2 ̂𝑎2 + (𝜖 ̂𝑎†
1 + 𝑔4𝛼4 ̂𝑎†

1 ̂𝑎†
2 + 𝐻.𝑐.) , ̂𝜌𝐷]

+ 𝛾1𝒟 ̂𝑎1[ ̂𝜌1] + 𝛾2𝒟 ̂𝑎2[ ̂𝜌2],

ℒ𝐸[ ̂𝜌𝐷] = − 𝑖 [𝛥3 ̂𝑎†
3 ̂𝑎3 + 𝛥4 ̂𝑎†

4 ̂𝑎4, ̂𝜌𝐷] + 𝛾3𝒟 ̂𝑎3[ ̂𝜌3] + 𝛾4𝒟 ̂𝑎4[ ̂𝜌4],

ℒ1[ ̂𝜌𝐷] = − 𝑖 [𝑔3 ̂𝑎3 ̂𝑎†2
1 + 𝑔4 ̂𝑎4 ̂𝑎†

1 ̂𝑎†
2 + 𝐻.𝑐., ̂𝜌𝐷] .

(3–6)

With effective theory, mode 𝑎3 and 𝑎4 are eliminated, the master equation for reduced state
𝑅̂12

𝑅 = tr3,4 { ̂𝜌𝐷}.

∂𝑡 ̂𝜌12
𝑅 = −𝑖 [𝐻̂12

𝑅 , ̂𝜌12
𝑅 ] +

2

∑
𝑗=1

𝛾𝑗𝒟 ̂𝑎𝑗 [ ̂𝜌12
𝑅 ] + 𝜅12𝒟 ̂𝑎1 ̂𝑎2[ ̂𝜌12

𝑅 ] + 𝜅1𝒟 ̂𝑎2
1
[ ̂𝜌12

𝑅 ],

where 𝐻̂12
𝑅 =

2

∑
𝑗=1

𝛥𝑗 ̂𝑎†
1 ̂𝑎1 + (𝜖1 ̂𝑎†

1 + 𝑔4𝛼4 ̂𝑎†
1 ̂𝑎†

2 + 𝐻.𝑐.)

+ 𝑢1 ̂𝑎†2
1 ̂𝑎2

1 + 𝑢12 ̂𝑎†
1 ̂𝑎†

2 ̂𝑎1 ̂𝑎2,

𝜅1 =
𝑔2

3𝛾3

𝛥2
3 + 𝛾2

3
, 𝜅12 =

𝑔2
4𝛾4

𝛥2
4 + 𝛾2

4
, 𝑢1 =

𝑔2
2𝛥3

𝛥2
3 + 𝛾2

3
, 𝑢12 = −

𝑔2
4𝛥4

𝛥2
4 + 𝛾2

4
.

(3–7)

3.2.3 Eliminate ̂𝑎2

Next we choose 𝛾2 much larger than other parameters and eliminate mode 𝑎2 with the same
technique. Finally we get an effective system for 𝑎1, whose reduced state ̂𝜌1

𝑅 = tr2 { ̂𝜌12
𝑅 } follows the

evolution function:

∂𝑡 ̂𝜌1
𝑅 = −𝑖 [𝐻̂1

𝑅, ̂𝜌1
𝑅] + 𝛾1𝒟 ̂𝑎1[ ̂𝜌1

𝑅] + 𝛤1𝒟 ̂𝑎†
1
[ ̂𝜌1

𝑅] + 𝜅1𝒟 ̂𝑎2
1
[ ̂𝜌1

𝑅],

where 𝐻̂1
𝑅 = 𝛿𝑅 ̂𝑎†

1 ̂𝑎1 + (𝜖1 ̂𝑎†
1 + 𝐻.𝑐.) + 𝑢1 ̂𝑎†2

1 ̂𝑎2
1,

𝛿𝑅 = 𝛥1 − ||𝑔4𝛼4||2

𝛾2
2 + 𝛥2

2
𝛥2, 𝛤1 = ||𝑔4𝛼4||2

𝛾2
2 + 𝛥2

2
𝛾2.

(3–8)
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Eq. (3–8) is our final equation for the effective system. The characteristic damping terms
𝛤1𝒟 ̂𝑎†

1
[ ̂𝜌1

𝑅] and 𝜅1𝒟 ̂𝑎2
1
[ ̂𝜌1

𝑅] shows that it is a Van der Pol oscillator. With precisely controlling the
parameters, we now are able to build a Van der Pol system with controllable detuning, driving and
damping.
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Chapter 4 A single Van der Pol oscillator

4.1 Classical Limit
In section 3.2, we built a VdP oscillator with superconducting circuit system. According to

(3–8), the master equation reads:

∂𝑡 ̂𝜌 = −𝑖 [𝐻̂, ̂𝜌] + 𝛾𝐷𝑎 [ ̂𝜌] + 𝜅𝐷𝑎2 [ ̂𝜌] + 𝛤 𝐷𝑎† [ ̂𝜌] ,
where 𝐻̂ = 𝛿 ̂𝑎† ̂𝑎 + (𝜖 ̂𝑎† + 𝐻.𝑐.) + 𝑢 ̂𝑎†2 ̂𝑎2.

(4–1)

We first investigate our model classically by assuming the state is a coherent at all tiems, |𝛼(𝑡)⟩.
With ⟨ ̂𝑎†𝑚 ̂𝑎𝑛⟩ = 𝛼∗𝑚𝛼𝑛, we can find the evolution equation for the displacement. This leads to the
classical limit of our Van der Pol system:

∂𝑡𝛼 = −𝑖𝜖 + [−𝑖𝛿 + 𝛤 − 𝛾 − 2 (𝜅 + 𝑖𝑢) |𝛼|2] 𝛼 (4–2)

In the following, we set 𝑢 = 0, and change to dimensionless variables 𝜏 = (𝛤 −𝛾)𝑡 and 𝛽 = √
2𝜅

𝛤 −𝛾 𝛼,

we absorbed 𝛤 and 𝛾 into the observables. Defining 𝐹 = −𝑖𝜖√2𝜅
(𝛤 −𝛾)3/2 and 𝛥 = − 𝛿

𝛤 −𝛾 , this is the final
form of the classical equation:

∂𝜏𝛽 = 𝐹 + (𝑖𝛥 + 1 − |𝛽|2) 𝛽, (4–3)

which depends only on two dimensionless parameters, the effective driving amplitude 𝐹 and the
normalized detuning 𝛥.

4.2 Phase diagram of classical model
With different parameters, a classical Van der Pol oscillator has different dynamic behaviors.

Apart from having stable solutions, it runs in limit cycle in special conditions. A limit cycle is
a closed trajectory in phase space as time approaches infinity, which makes it useful and famous
across the industry and scientific research. Such a dynamical evolution is also a good candidate for
time crystals. A typical limit cycle in our model is displayed in Figure 4–1. We plot the periodical
behavior of 𝛽 versus time in Figure 4–1a. Also, its limit cycle is shown in Figure 4–1b, where we
plot Im(𝛽) versus Re(𝛽).

Navarrete-Benlloch et al.[10] introduce the phase diagram of a Van der Pol model. With their
approach, we first acquire the asymptotic state by setting the right hand side of Eq. (4–3) to 0. It
lead to an equilibrium equation for the oscillator’s intensity 𝐼 = |𝛽|2.

𝐹 2 = (𝛥2 + 1) 𝐼 − 2𝐼2 + 𝐼3 (4–4)

Also, they investigated the stability of these steady states with the linear stability matrix. Finally,
Figure 4–2 shows the phase diagram for it. The dynamic equation has two independent parameters
in total: 𝐹 and 𝛥. By choosing different parameters, we find the model has five different phases,
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Figure 4–1 Periodical behavior in limit cycle phase

represented by different colors in the figure. Sub figures are plotted with different 𝛥. In each sub
figure, the amplitude 𝐼 of possible solutions of the oscillator is plotted versus the driving 𝐹 . Stable
stationary solutions are plotted with solid lines, and unstable solutions are plotted with dashes lines.
We also show the time-periodic solutions (limit cycles), displayed with dots and bars. The dots
shows the time average of |𝛽|2, and bars indicate the standard deviation of such dynamic evolution
in one period.
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Figure 4–2 Phase diagram

According to the figure, if detuning 𝛥 is not 0, limit cycle phase appears on the phase diagram.
As 𝛥 increases, the limit cycle phase has larger range for 𝐹 .
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4.3 Liouvillian spectrum of quantum Van der Pol model
It’s known that typically an open quantum system has only one stable state, or in another word,

the Liouvillian in master equation has only one zero eigenvalue. However, as we shown classically,
the Van der Pol oscillator has different phases with different numbers of stable states. For example,
in Figure 4–2, we can easily find parameters corresponding to one or two stable states. Moreover,
a model in limit cycle phase has infinitely-many dynamically stable states. In this section, we will
unveil the classical-quantum transition through the spectrum of the quantum model.

We do a similar parameter change as the classical version: 𝑢 = 0, 𝜏 = (𝛤 − 𝛾)𝑡, 𝐹 = −𝑖𝜖√2𝜅
(𝛤 −𝛾)3/2 ,

𝛥 = − 𝛿
𝛤 −𝛾 and 𝜅′ = 2𝜅

𝛤 −𝛾 . For simplicity, we also set 𝛾 = 0 and 𝛤 = 1. The master equation for
quantum Van der Pol model becomes:

∂𝜏 ̂𝜌 =
[

𝑖𝛥 ̂𝑎† ̂𝑎 +
(

𝐹
√𝜅′

̂𝑎† − 𝐻.𝑐.
)

, ̂𝜌
]

+ 𝒟 ̂𝑎† [ ̂𝜌] + 𝜅′

2 𝒟 ̂𝑎2 [ ̂𝜌] (4–5)

Look back to what we do in Section 4.1, we absorb the dissipative parameter 𝜅′ into 𝛼, by using
𝛽 = √2𝜅′𝛼. It result in a equation without 𝜅′. In this way, we can actually control how classical
the model is by changing 𝜅′. We can observe it from the displacement. For the same 𝛽, a smaller
𝜅′ gives a larger 𝛼. So when 𝜅′ is smaller, the Van der Pol system contains more coherent photons
and it is more classical. We will show this by plotting three examples.

We vectorize the state with Fock basis truncated up to 𝑁 = 400 and flatten the ̂𝜌 matrix to
a vector of length (𝑁 + 1)2. The Liouvillian can be represented by a sparse matrix with shape
(𝑁+1)2×(𝑁+1)2[21]. Setting𝛥 = 0.3167 and selecting different𝐹 , we investigate in the eigenvalues
of the super operator when 𝜅′ changes. Typical eigen-spectra of the Liouvillian are plotted in the
Figure 4–3. We place the eigenvalues as dots on the complex plane, and different colors represent
different 𝜅′.

Figure 4–3a shows the spectrum in classical limit cycle phase (𝛥2 = 0.3167 and 𝐹 2 = 0.2).
Focusing on a series of eigenvalues, say, the purple dots (𝜅′ = 0.020), the spectrum form a ap-
proximately horizontal curve at the top of the figure. The Liouvillian has a list of eigenvalues with
small real parts. Empirically, in this phase, real parts of the eigenvalues become closer to zero when
𝜅′ goes to zero. These states are asymptotically becoming dynamically stable states when the sys-
tem become more classical, and there will be infinity of them. It indicates that the model will have
infinite classical stable states, corresponding to the classical limit cycle behavior.

In Figure 4–3b, we display the classical stable phase(𝛥2 = 0.3167 and 𝐹 2 = 0.35). The figure
shows the imaginary parts of the eigenvalues become zero when 𝜅′ goes to zero, which becomes
significant when 𝜅′ is less than 0.02. And in this phase, only one stable eigenstate have zero real
part, which means only one state will survive.

Figure 4–3c displays the classical bifurcation phase, where classical VdP oscillator has two
stable solutions. Quantum mechanically, when 𝜅′ gets smaller, the system will have three eigen-
values close to zero. We believe that the two non-zero eigenvalues will meet at the vertical axis
when 𝜅′ → 0. We will roughly exhibit such behaviors in 4–4. In a word, the classical bifurcation
corresponds to the original stable state plus one of the non-zero eigenvalues, which approaches 0 as
𝜅′ → 0.

Figure 4–4 shows the spectrum pattern with the change of 𝐹 . With 𝛥 = 0.317 and 𝜅′ = 0.01,
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Figure 4–3 Typical spectrum of the Liouvillian

we observe a pattern change at around 𝐹 2 = 0.35, where the second and the third eigenvalues merge
at the axis. Although this point have no correspondence classically in this phase, but it may related
to the formation of the bifurcation.
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Figure 4–4 Spectrum with different 𝐹

– Page 16 of 39 –



NONEQUILIBRIUM QUANTUM PHENOMENA THROUGH THE VAN
DER POL MODEL

4.4 Quantum non-equilibrium behavior: time-crystalline order?
For a classical Van der Pol oscillator in limit cycle phase, it oscillates with a certain phase

continuously. Since the dynamical equation has time translational symmetry, the classical oscillator
experience a Spontaneous Symmetry Breaking (SSB). However, such a classical system requires
𝜅′ → 0 to achieve infinite excitations, which is impossible in real world. Moreover, for any non-
vanishing 𝜅′ ,we will show that quantum fluctuations end up destroying the symmetry breaking state
and turn it into one that preserves time-translational invariance. Hence, time-crystalline order is not
possible in a single Van der Pol oscillator, since it is not robust against quantum fluctuations.

Achieving a continuously oscillating system with SSB is difficult in quantum mechanics. The
system is not only disturbed by the quantum noise, but also effected by the non-equilibrium dy-
namics. Since the oscillating state is far from equilibrium, the quantum Van der Pol oscillator will
inevitably fall into a steady state in the end, which is just a matter of time for a simple quantum
open system. We investigate in this non-equilibrium system via two method, direct visualization
and approximate analytical calculation. For simplicity, we use a non-driven system as an example,
where 𝐹 = 0 and 𝛥 = 0.26. Here the non-zero 𝛥 doesn’t come from detuning but from an inherent
frequency.

4.4.1 Direct visualization
First, we show the Wigner visualization of the non-equilibrium evolution in Figure 4–5. Ini-

tially, the system is in a coherent state. Via vectorizing the state in Fock basis and integrating the
master equation, we simulate the Van der Pol system with 𝜅′ = 0.12, from 𝜏 = 0 to 𝜏 = 28.

5 0 5
Re( )

5

0

5

Im
(

)

= 0.00

5 0 5
Re( )

5

0

5

Im
(

)

= 4.00

5 0 5
Re( )

5

0

5

Im
(

)

= 8.00

5 0 5
Re( )

5

0

5

Im
(

)

= 12.00

5 0 5
Re( )

5

0

5

Im
(

)

= 16.00

5 0 5
Re( )

5

0

5

Im
(

)

= 20.00

5 0 5
Re( )

5

0

5

Im
(

)

= 24.00

5 0 5
Re( )

5

0

5

Im
(

)

= 28.00

Figure 4–5 Wigner visualization

Clearly in Figure 4–5, in finite time, a coherent state will gradually diffuse to a uniform steady
state, which looks like a blue ring in the phase space. Such a steady state will not oscillate anymore
and end the time crystal behavior. When quantum noises pull the system’s phase apart from the
original phase randomly, the system can’t correct such deviation and result in phase diffusion.
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4.4.2 Analysis
Luckily, we are able to show this phase diffusion effect analytically. Using positive-P repre-

sentation introduced in Section 2.3, the system is described by a vector 𝜷 = (𝛽, 𝛽+)
𝑇 . Its evolution

follows a stochastic equation set:

∂𝜏𝜷 = A(𝜷) + ℬ(𝜷)𝜼(𝜏),

where A(𝜷) =
(

𝐹 + 𝛽 (𝑖𝛥 + 1 − 𝛽+𝛽)
𝐹 + 𝛽+ (−𝑖𝛥 + 1 − 𝛽+𝛽))

,

ℬ(𝜷) = √𝜅′
(

𝑖𝛽 0 1 𝑖
0 −𝑖𝛽+ 1 −𝑖)

(4–6)

𝜼(𝜏) is a real stochastic vector of length 4.
Following Navarrete-Benlloch et al.[10], we linearize the system around limit cycle, assuming

the fluctuation 𝑏 is small compared to the classical motion:

𝛽(𝜏 + 𝜃) = ̄𝛽(𝜏 + 𝜃) + 𝑏(𝜏 + 𝜃)
𝛽+(𝜏 + 𝜃) = ̄𝛽∗(𝜏 + 𝜃) + 𝑏+(𝜏 + 𝜃)

(4–7)

Here ̄𝛽(𝜏 + 𝜃) is the classical solution of (4–3) and 𝜃 describes the phase shift from the classical
trajectory. Applying (4–7) to (4–6), we get a linearized equation

∂𝜏b(𝜏) + p0(𝜏)∂𝜏𝜃(𝜏) = ℒ(𝜏)b(𝜏) + √𝜅′n(𝜏), (4–8)

where b = (𝑏, 𝑏+)𝑇 , p0 = (∂𝜏 ̄𝛽, ∂𝜏 ̄𝛽∗)𝑇 , n = [√2𝜉 − 𝑖 ̄𝛽𝜂, √2𝜉∗ − 𝑖 ̄𝛽𝜂+
]

𝑇
. 𝜉 is a complex stochastic

variable, 𝜂 and 𝜂+ are the real ones. Linear stability matrix ℒ reads

ℒ(𝜏) =
(

1 − 2| ̄𝛽(𝜏)|2 + 𝑖𝛥 − ̄𝛽(𝜏)2

− ̄𝛽∗2(𝜏) 1 − 2| ̄𝛽(𝜏)|2 − 𝑖𝛥 )
. (4–9)

The noise term can be described by the correlation 𝑛𝑗(𝜏)𝑛𝑙 (𝜏′) = 𝑁𝑗𝑙(𝜏)𝛿 (𝜏 − 𝜏′), and

𝒩 (𝜏) =
(

− ̄𝛽2(𝜏) 2
2 − ̄𝛽∗2(𝜏) )

. (4–10)

To solve the periodic dynamic equation, the Floquet method is used, introduced in Section 2.4.
We will make use of left and right Floquet eigenvectors p𝑗(𝜏) and q†

𝑗 (𝜏), which satisfy

ṗ𝑗(𝜏) = [ℒ(𝜏) − 𝜇𝑗]p𝑗(𝜏),
q̇†

𝑗 (𝜏) = q†
𝑗 (𝜏) [𝜇𝑗 − ℒ(𝜏)] .

(4–11)

Also, the left eigenvectors and right ones satisfy the orthogonality conditions q†
𝑗 (𝜏)p𝑙(𝜏) = 𝛿𝑗𝑙.[10]

proved that p0 in (4–8) is exactly the Floquet right eigenvector corresponding to the zero eigenvector.
Now we apply q†

0 to the left side of (4–8), obtaining ∂𝜏𝜃 = √𝛾q†
0(𝜏)n(𝜏). Here we have remove

a redundant term q†
0b off by setting it to zero. Finally the integration can be carried out:

𝑉 (𝜏) = [𝜃(𝜏) − 𝜃(0)]2 = 𝛾 ∫
𝜏

0
𝑑𝜏′q†

0 (𝜏′) 𝒩 (𝜏′)q∗
0 (𝜏′) (4–12)
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For a non-driven system, Eq. (4–3) has an analytical solution: ̄𝛽 = 𝑒𝑖𝛥𝑡+𝜙, where 𝜙 is an arbi-
trary initial phase. Plugging it in (4–10) and (4–12), we obtain 𝑉 (𝜏) = 3

2 𝜅′𝜏, a linearly increasing
variance with slope 𝑠0 = 3

2 𝜅′. It means that the phase diffuses continuously within our linearization
approximations.

We perform a stochastic simulation of (4–6) to verify this result, using the mid-point method
introduced in Section 2.3.4. In this simulation, we set 𝐹 = 0, 𝛥 = 0.26, 𝜅′ = 10−6 and simulate
the system between 𝜏 = 0 and 𝜏 = 20 for 2000 stochastic trajectories. At every time step 𝜏𝑥,
we calculate the phase 𝜃(𝜏𝑥) by 𝜃(𝜏𝑥) = Im [ln(𝛽(𝜏𝑥)/ ̄𝛽(𝜏𝑥))]. We then evaluate the variance of
phase 𝜃(𝜏𝑥) over stochastic repetitions. The variance is divided by a slope 𝑠0 and finally plotted on
Figure 4–6. It shows that our analytical prediction is true, and the variance of the system experiences
a linear growth.

0 5 10 15 20
0

5

10

15

20

V/
s 0

Figure 4–6 Variance growth

In aword, we are not able to protect time-crystalline order through a singleVan der Pol oscillator
because of quantumfluctuation. Such an oscillating systemwill not last long and become equilibrium
in the end.
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Chapter 5 Time-crystalline order in Van der Pol lattices

5.1 Coupled Van der Pol lattice
Lee et al.[9] show that coupling Van der Pol oscillators together will exhibit phase lock phe-

nomena. Our classical simulation in Section B also give some examples of this by several numerical
experiments. To protect the oscillation against quantum noise, we propose to build coupled Van der
Pol lattices. 𝐿 coupled Van der Pol oscillators are described by a master equation:

∂𝑡 ̂𝜌 = −𝑖 [𝐻̂, ̂𝜌] +
𝐿−1

∑
𝑗=0 (𝐷𝑎𝑗 [ ̂𝜌] + 𝜅′

2 𝐷𝑎2
𝑗

[ ̂𝜌]) ,

where 𝐻̂ =
𝐿−1

∑
𝑗=0

⎡
⎢
⎢
⎣
−𝛥 ̂𝑎†

𝑗 ̂𝑎𝑗 +
(

−𝑖 𝐹
√𝜅′

̂𝑎†
𝑗 + 𝐻.𝑐.

)
+ 𝑖 𝑔

𝑁𝑐
̂𝑎†
𝑗 ∑𝑐𝑗

̂𝑎𝑐𝑗

⎤
⎥
⎥
⎦

.
(5–1)

The last summation is over all modes ̂𝑎𝑐𝑗 that are coupled with ̂𝑎𝑗 . 𝑁𝑐 is the connectivity of the
system, representing howmany oscillators a mode is connected to. For example, lattice of dimension
𝐷 has connectivity 𝑁𝑐 = 2𝐷. 𝑔 is a real coupling constant, and it is divided by the connectivity,
which keeps the Hamiltonian extensive in the system size.

Similar to Section 4.4.2, we focus on the non-driven system for simplicity. With 𝛥 = 0 and
𝐹 = 0, a non-drivenVan der Pol lattice is simple enough for us to investigate in its classical analytical
solution. (5–1) is equivalent to a stochastic equation (5–2) using positive P representation. For each
mode 𝛽𝑗 :

∂𝜏𝛽𝑗 = (1 − 𝛽+
𝑗 𝛽𝑗) 𝛽𝑗 + 𝑖 𝑔

𝑁𝑐 ∑𝑐𝑗

𝛽𝑐 + √𝜅′ [√2𝜉𝑗(𝜏) + 𝑖𝛽𝑗𝜂𝑗(𝜏)]

∂𝜏𝛽+
𝑗 = (1 − 𝛽+

𝑗 𝛽𝑗) 𝛽+
𝑗 − 𝑖 𝑔

𝑁𝑐 ∑𝑐𝑗

𝛽+
𝑐 + √𝜅′ [√2𝜉∗

𝑗 (𝜏) − 𝑖𝛽+
𝑗 𝜂+

𝑗 (𝜏)]
(5–2)

𝜉𝑗 are complex gaussian noises, 𝜂𝑗 and 𝜂+
𝑗 are real gaussian noises.

5.2 Stability of 1D Van der Pol ring
In this section, we focus on 1D Van der Pol ring as an example, which means mode 𝑗 is only

coupled with mode 𝑗 − 1 and 𝑗 + 1. Note that when 𝑗 of some mode is less than 0 or larger than
𝐿 − 1, we regard it as 𝑗 mod 𝐿. Oscillators at head and tail are coupled, make this system a ring.

5.2.1 Patterns of the solutions
Setting 𝜅′ = 0 and solving (5–2), we can get the a set of classical solutions and find the patterns

of steady states. Oscillators from all these states shares the same limit cycle, circle of radius 1, with
different in phases.

̄𝛽𝑗(𝜏) = 𝑒2𝜋𝑖𝑗𝑘/𝐿+2𝑖𝑔𝑘𝜏+𝑖𝜃 , 𝑔𝑘 = 𝑔 cos(2𝜋𝑘/𝐿). (5–3)

– Page 20 of 39 –



NONEQUILIBRIUM QUANTUM PHENOMENA THROUGH THE VAN
DER POL MODEL

Here 𝑘 represents different stable pattern of the system. For a certain pattern, modes with different
phases are arranged in order, and if 𝑘 is a factor of 𝐿, a sub-pattern appears on the ring repeatedly.
Here we define 𝑙 to be the number of distinct phases that ̄𝛽𝑗 can have, which is also the least os-
cillator number of the sub-pattern. For example, when we choose 𝑘 = 𝐿/3, 𝑙 = 3. The phases of
oscillators are: 0, 2𝜋

3 , 4𝜋
3 , 0, 2𝜋

3 , ⋯ . By scattering all 𝛽𝑗 in one complex plane, Figure 5–1 displays
some different patterns. It should be noted that, solutions in (5–3) don’t cover all stable patterns.

a) 𝑙 = 1 b) 𝑙 = 2 c) 𝑙 = 3 d) 𝑙 = 4

Figure 5–1 Different patterns of stable solutions

Besides, Eq. (5–3) shows that each mode is rotating with frequency 𝑔𝑘, which comes from the
coupling effect with neighbors.

5.2.2 Stability analysis
It can be analytically proved and numerically tested that, all these patterns with different 𝑘 are

stables solution of (5–2). Following is the proof:

Linearization To investigate in the stability, we only need to focus on the classical part of the
(5–2). The system is described by 𝜷 = (𝛽1, 𝛽+

1 , ⋯ , 𝛽𝐿, 𝛽+
𝐿) with positive P representation. Similar

to the way we obtain (4–8), it is linearized via 𝜷(𝜏 + 𝜃) = ̄𝜷(𝜏 + 𝜃) + b(𝜏 + 𝜃) and finally it can be
described by (5–4). Importantly, all modes share the same 𝜃 because of the coupled system is only
invariant under global time translations, not translations of each oscillators independently, which
will be discussed later in Section 5.4. Note that, in the following all superscripts represent the size
of the subsystem. For example, ℒ𝐿(𝜏) is a (2𝐿 × 2𝐿) matrix. We obtain:

∂𝜏b𝐿(𝜏) + p𝐿
0 (𝜏)∂𝜏𝜃(𝜏) = ℒ𝐿(𝜏)b𝐿(𝜏) + √𝜅′n𝐿(𝜏),

where ℒ𝐿 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ℒ1
0 𝒯 1 𝒯 1

𝒯 1 ℒ1
1 𝒯 1

⋱

𝒯 1 𝒯 1 ℒ1
𝐿−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

ℒ1
𝑗 (𝜏) = −

(
1 ̄𝛽2

𝑗 (𝜏)
̄𝛽∗2
𝑗 (𝜏) 1 )

, and 𝒯 1 =
(

𝑖𝑔 0
0 −𝑖𝑔)

(5–4)

Note that here the ̄𝛽𝑗 are classical solutions given by (5–3) with some choice of 𝑘, corresponding to
the pattern whose stability we are studying.
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Remove 𝜏-dependence For each ℒ1
𝑗 , we can remove 𝜏 by picture transformation ℒ1

𝑗 (𝜏) =
−𝒰 1†

𝑔 (𝜏)ℳ1
𝑗 𝒰 1

𝑔 (𝜏),

where ℳ1
𝑗 =

(
1 𝑒4𝜋𝑖𝑗𝑘/𝐿

𝑒−4𝜋𝑖𝑗𝑘/𝐿 1 )
, 𝒰 1

𝑔 (𝜏) =
(

𝑒−2𝑖𝑔𝑘𝜏 0
0 𝑒2𝑖𝑔𝑘𝜏)

. (5–5)

On the basis of (5–5), we can get ℒ𝐿(𝜏) = −𝒰 𝐿†
𝑔 (𝜏)ℳ𝐿𝒰 𝐿

𝑔 (𝜏),

where 𝒰 𝐿(𝜏) =

⎛
⎜
⎜
⎜
⎜
⎝

𝒰 1
𝑔 (𝜏)

𝒰 1
𝑔 (𝜏)

⋱
𝒰 1

𝑔 (𝜏)

⎞
⎟
⎟
⎟
⎟
⎠

and ℳ𝐿 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ℳ1
0 𝒯 1 𝒯 1

𝒯 1 ℳ1
1 𝒯 1

⋱

𝒯 1 𝒯 1 ℳ1
𝐿−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(5–6)

We take the derivative of 𝒰 𝐿b𝐿 and find the new motion function:

∂𝜏 (𝒰 𝐿b𝐿) = ∂𝜏𝒰 𝐿b𝐿 + 𝒰 𝐿∂𝜏b𝐿 = (−2𝑖𝑔𝑘𝒵𝐿 − ℳ𝐿) 𝒰 𝐿b𝐿,

where 𝒵𝐿 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
−1

⋱
1

−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

is (2𝐿 × 2𝐿)
(5–7)

Define x = 𝒰 𝐿(𝜏)b𝐿 and it observes the motion function ∂𝜏x = 𝒮𝐿x

where 𝒮𝐿 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝒮1
0 𝒯 1 𝒯 1

𝒯 1 𝒮1
1 𝒯 1

⋱

𝒯 1 𝒯 1 𝒮1
𝐿−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and 𝒮1
𝑗 =

(
−1 − 2𝑖𝑔𝑘 −𝑒4𝜋𝑖𝑗𝑘/𝐿

−𝑒−4𝜋𝑖𝑗𝑘/𝐿 −1 − 2𝑖𝑔𝑘)

(5–8)

Having now a time-independent linear problem characterized by the linear stability matrix 𝒮𝐿, we
can proceed to study the stability of the patterns with different 𝑘.

Diagonalization With Fourier transformation ℱ , we are able to diagonalize 𝒮𝐿. The transforma-
tion has another form 𝑓𝑞 = 1

√𝐿
∑𝐿−1

𝑗=0 𝑒−2𝜋𝑖𝑗𝑞/𝐿𝑥𝑗 and its inverse reads 𝑥𝑗 = 1
√𝐿

∑𝐿−1
𝑞=0 𝑒2𝜋𝑖𝑗𝑞/𝐿𝑓𝑞 .
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The Fourier transformation between 𝑓 +
𝑞 and 𝑥+

𝑗 is similar but a complex conjugate of prior one.
Using the dynamic equation for 𝑥𝑗 , we can obtain the equation for 𝑓𝑞:

∂𝜏𝑥𝑗 = (−1 − 2𝑖𝑔𝑘)𝑥𝑗 − 𝑒4𝜋𝑖𝑗𝑘/𝐿𝑥+
𝑗 + 𝑖𝑔(𝑥𝑗+1 + 𝑥𝑗−1)

⇒ ∂𝜏𝑓𝑞 = (−1 − 2𝑖𝑔𝑘)𝑓𝑞 − 1
√𝐿

𝐿

∑
𝑗=1

𝑒2𝜋𝑖𝑗𝑞/𝐿𝑒4𝜋𝑖𝑗𝑘/𝐿𝑥+
𝑗

+ 𝑖𝑔
√𝐿

⎛
⎜
⎜
⎝
∑
𝑗=1

𝐿𝑒−2𝜋𝑖𝑗𝑞/𝐿𝑥𝑗−1 + ∑
𝑗=1

𝐿𝑒−2𝜋𝑖𝑗𝑞/𝐿𝑥𝑗+1
⎞
⎟
⎟
⎠

= −1 − 2𝑖𝑔′
𝑘(𝑞)𝑓𝑞 − 𝑓 +

𝑞+2𝑘

(5–9)

where 𝑔′
𝑘(𝑞) = 𝑔 [cos(2𝜋𝑘/𝐿) − cos(2𝜋𝑞/𝐿)]. We also derive the equation for 𝑓 +

𝑞+2𝑘, and find it
connects with 𝑓𝑞 . So the motion equation in Fourier space appear in pairs:

∂𝜏 (
𝑓𝑞

𝑓 +
𝑞+2𝑘)

= 𝒢1
𝑞 (

𝑓𝑞
𝑓 +

𝑞+2𝑘)

where 𝒢1
𝑞 =

(
−1 − 2𝑖𝑔′

𝑘(𝑞) −1
−1 −1 + 2𝑖𝑔′

𝑘(𝑞))

(5–10)

Hereto we successfully diagonalize the matrix and decouple the system by rearranging the 𝑓𝑞 by
f𝑘 = (𝑓1, 𝑓 +

1+2𝑘, ⋯ , 𝑓𝐿, 𝑓 +
𝐿+2𝑘):

∂𝑡f𝑘 =

⎛
⎜
⎜
⎜
⎜
⎝

𝒢1
0

𝒢1
1

⋱
𝒢1

𝐿−1

⎞
⎟
⎟
⎟
⎟
⎠

(5–11)

Stability We calculate the eigenvalues of 𝒢1
𝑞:

𝜆± = −1 − 𝑖[𝑔′
𝑘(𝑞) − 𝑔′

𝑘(𝑞 + 2𝑘)] ± √1 − [𝑔′
𝑘(𝑞) + 𝑔′

𝑘(𝑞 + 2𝑘)]2, (5–12)

All have negative real parts, except when 𝑞 = 𝑘, for which 𝜆 = 0. This means that all the pattern
̄𝛽𝑗(𝜏) with a given 𝑘 is stable against perturbations 𝑓𝑞 with quasi-momentum 𝑞 ≠ 𝑘. On the other

hands, the zero eigenvalue associated to perturbations 𝑓𝑞=𝑘 is related to the invariance of the system
under global phase transformations 𝛽𝑗 → 𝛽𝑗𝑒𝑖𝜎 , and is an example of Goldstone’s theorem. Hence
we proved that all of these patterns with different 𝑘 are stable solutions.

For general Van der Pol lattices, we can still see patterns in the classical solutions. We show a
simple example in Section A and show that these states are not always stable any more.

5.3 Analytical prediction for phase diffusion
With classical solutions we get in the last section, we are able to linearize the system. Like

what we do for a single Van der Pol oscillator in Section 4.4.2, we calculate the variance growth
for the coupled ones. For a system exhibit stable property of time crystal, the increase rate of vari-
ance should decrease by number of oscillators. With our linearization method, we have analytically
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proved that it should be true for one-dimensional lattice. However, through numerical simulations of
the exact stochastic equations, we show later that, still, this might not be enough for time-crystalline
behavior.

Subsystem First, classically, ring of 𝐿 = 𝐿0 and 𝑙 = 𝑙0 is the same with a shorter ring of 𝐿′ = 𝑙0
and 𝑙′ = 𝑙0. It is obvious from the solution (5–3), because ring of𝐿0 oscillators repeats the same clas-
sical solution as a ring of length 𝑙0. Here we give another intuition of this claim. 𝛽𝑥, 𝛽𝑥+1, ⋯ , 𝛽𝑥+𝑙0−1
are 𝑙0 consecutive oscillators in the longer Van der Pol ring. The last one, 𝛽𝑥+𝑙0−1, is coupled with
𝛽𝑥+𝑙0 , which has the same phase as 𝛽𝑥. So the consecutive part is effectively a closed ring itself, or
in other words, ring of 𝐿′ = 𝑙0 is a subsystem of ring of 𝐿 = 𝐿0.

Then we linearize the subsystem of 𝐿′ = 𝑙0, and obtain the linear stability matrix ℒ𝑙0 . It can
be split to a more convenient form for the next derivation: ℒ𝑙0 = ℒ𝑙0

𝑠 + 𝒯 𝑙0
𝑠 + 𝒯 𝑙0𝑇

𝑠 , where

ℒ𝑙0
𝑠 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ℒ1
0 𝒯 1

𝒯 1 ℒ1
1 𝒯 1

⋱

𝒯 1 ℒ1
𝑙0−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, 𝒯 𝑙0
𝑠 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0

⋱

𝒯 1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5–13)

Here superscript “T” means transpose operation.
We denote by q𝑙0†

0 (𝜏) (or p𝑙0
0 (𝜏)) the left (or right) Floquet eigenvector of ℒ𝑙0 with zero eigen-

value. They satisfy
ṗ𝑙0

0 (𝜏) = ℒ𝑙0(𝜏)p𝑙0
𝑗 (𝜏),

q̇𝑙0†
0 (𝜏) = −q𝑙0†

𝑗 (𝜏)ℒ𝑙0(𝜏).
(5–14)

and normalization condition
q𝑙0†

0 (𝜏)p𝑙0
0 (𝜏) = 1 (5–15)

The whole system Using the representation above, we can linearize the system with 𝐿 = 𝐿0
easily, because there is periodicity in oscillators and ℒ1

𝑙0+𝑗 = ℒ1
𝑗 . Its stability matrix reads

ℒ𝐿0 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ℒ𝑙0
𝑠 𝒯 𝑙0

𝑠 𝒯 𝑙0𝑇
𝑠

𝒯 𝑙0𝑇
𝑠 ℒ𝑙0

𝑠 𝒯 𝑙0
𝑠

⋱

𝒯 𝑙0
𝑠 𝒯 𝑙0𝑇

𝑠 ℒ𝑙0
𝑠

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5–16)

The final equation for integrating variance is also similar:

𝑉 𝐿0(𝜏) = [𝜃(𝜏) − 𝜃(0)]2 = 𝛾 ∫
𝜏

0
𝑑𝜏′q𝐿0†

0 (𝜏′) 𝒩 𝐿0 (𝜏′)q
𝐿0∗
0 (𝜏′) , (5–17)
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Here 𝒩 𝐿0 is the correlation matrix:

𝒩 𝐿0 =

⎛
⎜
⎜
⎜
⎜
⎝

𝒩 𝑙0

𝒩 𝑙0

⋱
𝒩 𝑙0

⎞
⎟
⎟
⎟
⎟
⎠

,

where 𝒩 𝑙0 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝒩 1
0

𝒩 1
1

⋱
𝒩 1

𝑙0−1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

and 𝒩 1
𝑗 =

(
− ̄𝛽2

𝑗 (𝜏) 2
2 − ̄𝛽∗2

𝑗 (𝜏))

(5–18)

With the knowledge of the subsystem, we claim the Floquet eigenvector p𝐿0
0 (𝜏) is a simple

repetition of p𝑙0
0 (𝜏) with a normalization factor 𝜒𝑝, namely, p𝐿0

0 = 𝜒𝑝 (p
𝑙0𝑇
0 ,p𝑙0𝑇

0 , ⋯ )
𝑇

= 𝜒𝑝∂𝜏 ̄𝜷,
because

ℒ𝐿0p𝐿0
0 = 𝜒𝑝

⎛
⎜
⎜
⎜
⎝

(ℒ𝑙0
𝑠 + 𝒯 𝑙0

𝑠 + 𝒯 𝑙0𝑇
𝑠 )p𝑙0

0
⋮

(ℒ𝑙0
𝑠 + 𝒯 𝑙0

𝑠 + 𝒯 𝑙0𝑇
𝑠 )p𝑙0

0

⎞
⎟
⎟
⎟
⎠

= 𝜒𝑝

⎛
⎜
⎜
⎜
⎝

∂𝜏p
𝑙0
0

⋮
∂𝜏p

𝑙0
0

⎞
⎟
⎟
⎟
⎠

= ∂𝜏p
𝐿0
0 . (5–19)

In the linearized equation (5–4), p𝐿0
0 (𝜏) is defined directly as ∂𝜏 ̄𝜷, so the norm 𝜒𝑝 is fixed to 1. On

the other hands, we also have q𝐿0†
0 (𝜏) = 𝜒𝑞 (q

𝑙0†
0 ,q𝑙0†

0 , ⋯ ). Its norm factor 𝜒𝑞 is determined by Eq.
(5–15):

q𝐿0†
0 p𝐿0

0 = 𝐿0
𝑙0

𝜒𝑞q
𝑙0†
0 p𝑙0

0 = 1,

⇒ 𝜒𝑞 = 𝑙0
𝐿0

(5–20)

In a word, the Floquet eigenvectors for the system are:

p𝐿0
0 = (p𝑙0𝑇

0 , ⋯ , p𝑙0𝑇
0 )𝑇

q𝐿0†
0 = 𝑙0

𝐿0
(q𝑙0†

0 , ⋯ , q𝑙0†
0 )

(5–21)

Plug (5–21) into (5–17), we get

𝑉 𝐿0(𝜏) = 𝑙0
𝐿0

𝑉 𝑙0(𝜏), (5–22)

which is our final analytical result. Since pattern 𝑙0 and subsystem’s variance is fixed, we predict the
system’s variance 𝑉 𝐿0 is inverse proportional to the system’s size 𝐿0. If it is true, the macroscopical
coupled Van der Pol system is a time crystal when properly initialized. When the system has a large
number of oscillators (for example, Avogadro’s number), the variance will be kept low for almost
infinite time.

5.4 Stochastic simulation and time-crystalline order
In Section 4.4.2, we show the stochastic simulation for a single Van der Pol oscillator and verify

the linear variance growth. In this section, we apply the same technique to the coupled Van der Pol
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systems and plot the variance growth of them. 𝑙 = 1 case is chosen and all oscillators are initialized
to be synchronized. Besides 1DVan der Pol rings, we also simulate the 2D, 3D and all-to-all coupled
(A2A) Van der Pol lattices, which we haven’t analytically researched. Oscillators in a 2D system are
coupled with their four neighbors (up, down, left, right), and ones in a 3D system are coupled with
six neighbors. In an A2A coupled system, each oscillator is coupled to everyone else.

5.4.1 Slope of variance growth
In the numerical simulation, (5–2) is simulated for 32000 times for each parameter combination,

which consists of different connectivity and different 𝐿. For every stochastic trajectory, we calculate
the phase 𝜃𝑗(𝜏) for all modes 𝛽𝑗 , by 𝜃𝑗(𝜏) = Im [ln(𝛽𝑗(𝜏)/ ̄𝛽𝑗(𝜏))]. Then the variance 𝑉𝑗(𝜏) of 𝜃𝑗(𝜏)
is obtained. In one sub-figure of Figure 5–2, 𝑉𝑗𝜏 is plotted with different colors.

In the numerical simulation, these coupled systems’ variances display a similar trend versus 𝜏.
we exhibit the variance growth with different 𝐿0 and lattice dimension, where 𝑔 = 1 and 𝜅′ = 10−6.
𝑉 (𝜏) is divided by 𝑠0 = 3

2 𝜅′ in the plot, which was the slope of 𝑉 1(𝜏) for a single oscillator.
After carefully studying, comparing and fitting these curves, we come up with these conclu-

sions. All of the curves with different sizes have the same beginning, whose slope is exactly 1. It is
also true for 1D, 2D, 3D and A2A case. This initial variance increase violates our prediction through
linearization. Such an abnormal effect may come from our initial assumption in (5–4), which claims
all modes are strongly coupled and share the same variable 𝜃. The violation indicate that, the cou-
pling cannot synchronize the oscillators instantaneously, but requires some time to reach the state in
which all phases are locked to the global 𝜃. Onece in this stage, variance increases with slope 𝑠0/𝐿
according to our theory.

In a word, there are two stages of variance growth: first, the variances grow with slope 𝑠0, and
then the slopes decrease to 𝑠0/𝐿0. Figure 5–3a shows the relationship between second stage’s slope
and size of lattice. The slope of the lattice is acquired by 𝑠 = 𝑑𝑉 /𝑑𝜏, and in the figure, we plot
lg(𝑠/𝑠0) versus lg(𝐿). The figure also includes a reference line 𝑦 = −𝑥. All dots are on the line,
indicating that 𝑠 = 𝑠0/𝐿.

5.4.2 Candidate for time crystal
Our goal is realizing a system with low phase diffusion in a long time. In our model, macro-

scopical coupled Van der Pol lattices do have the potential to achieving a stable variance, because
with enormously large 𝐿 like Avogadro’s number, the second stage’s slope goes to zero. Different
from our analytical result, it doesn’t mean the system becomes robust against quantum fluctuation,
because of the variance growth at first stage. To research it, we fit the second stages of variance
growth with line 𝑉 (𝜏) = 𝑠𝜏 + 𝑉0, and 𝑉0 is a initial bias for the linear growth. Figure 5–3b plots the
relationship between lg(𝑉0) and lg(𝐿).

From the figure, it’s clear that except A2A systems, systems with finite connectivity have a
𝑉0 proportional to 𝐿𝑟, where 𝑟 is a positive number. Although 𝑟 is reduced as lattices’ dimension
increase, we believe it always keeps positive, which makes the variance explode in a macroscopical
system and destroys the time-crystalline order. Variance suppression can only be achieved in A2A
system, when connectivity and 𝐿 reach infinity at the same time. In Figure 5–3b, we observe a
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Figure 5–2 Variance growth
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Figure 5–3 Linear fit for the variance growth

gradually saturating 𝑉0 in A2A system when 𝐿 becomes larger. It means that only in an all-to-
all coupled system, the phase variance is kept low against quantum fluctuations. Hereto we finally
prove that the time-crystalline order can be achieved in a macroscopical all-to-all coupled Van der
Pol lattice.

Our theory is also consistent with the reality that we haven’t seen this kind of time-crystal in
nature or in an experiment, because the time-crystalline order is hard to achieve according to (5–22).
First, there are too many of classically stable patterns in a macroscopical system, and with natural
(random) initialization, a lattice is more likely to fall onto a state without repeated patterns, which is
important to keep 𝑙0/𝐿0 small. Second, a macroscopical all-to-all coupled system is hard to achieve
with existing platforms.
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Chapter 6 Conclusion

In this thesis, we give a proof of the existence of self-sustained quantum oscillation and show
an architecture of it with coupled Van der Pol lattice, with which we achieve time crystalline order
in an open system.

In Chapter 3, we introduce the ATS system, a novel kind of superconducting circuits whose
Hamiltonian have a third order coupling term. We generalize it to a four mode system and adjust the
circuit parameters to achieve down-conversion. Using effective theory, we eliminate the irrelevant
fields and finally get a single-mode systems. In the master equation, the system has a characteristic
pumping term and a non-linear damping term, indicating it is effectively a quantum Van der Pol
oscillator.

In Chapter 4, a single Van der Pol oscillator is studied classically and quantum mechanically.
By plotting the phase diagram of the Van der Pol oscillator in classical limit, we find it evolve in limit
cycle under certain conditions. In the limit cycle phase, classical oscillator runs in a closed phase-
space trajectory and keeps oscillating forever. However, we show a quantum Van der Pol oscillator
will soon leave such an oscillatory behavior, which is far from equilibrium, and is vulnerable to
quantum fluctuations. To prove it, we define phase variance as a measure of maintenance of time-
crystalline order, which is kept if variance small in infinite long time. With linearization and Floquet
method, we find the variance grows linearly in time, and it is also verified by a numerical simulation.
Hence, a single Van der Pol oscillator can not display time-crystalline order.

With the knowledge of coupled Van der Pol oscillators are synchronized, we focus on building
time crystal with the coupled Van der Pol lattices in Chapter 5. A non-driven 1D Van der Pol lattice
has a set of limit cycle solutions, all of which are stable classically. Some solutions have spacial
patterns that repeat along the 1D Van der Pol ring. Adapting a simple matrix analysis method, we
analytically find that the coupling effect suppresses the variance growth inverse proportional to the
lattice size. In the numerical simulation, we observe an unpredicted initial variance growth stage
besides the variance growth suppression, which results in a initial variance bias. For 1D, 2D and 3D
lattices, such initial variance biases scale with a positive power of the lattice size, which means that
by the time the quantum fluctuations are suppressed, the time-crystalline order is already lost. But
for the all-to-all coupled model, its initial variance is a constant and independent of the system size.
As a result, time crystalline order is achieved in a finite time for a large all-to-all coupled system.

In a word, what we achieve is building a self-sustained quantum oscillators and breaking time
translation symmetry with an open system. Besides superfluid, whose oscillation is sustained by
particle number conservation, and Floquet time crystal, which only breaks the discrete time transla-
tion symmetry, our work gives a novel realization of breaking continuous time translation symmetry
and achieving time-crystalline order in open systems.

– Page 29 of 39 –



NONEQUILIBRIUM QUANTUM PHENOMENA THROUGH THE VAN
DER POL MODEL

Appendix A Patterns in a general Van der Pol ring

Classically, we proved that a synchronized state is always stable in a 1D non-driven Van der Pol
ring in Section 5.2, but it’s not true in every general Van der Pol lattices. We here choose a system
with 𝐿 = 12, 𝛥2 = 0.3 and 𝐹 2 = 0.2 as an example.

For a Van der Pol ring, there exist various spacial patterns, and similar phases patterns repeat
on the ring periodically. Some common patterns of the non-driven systems are shown in Eq. (5–3)
and Figure 5–1 shows and we prove that they are all stable states. Here we give another state, who
has phase (0, 0, 𝜋, 𝜋, 0, 0, 𝜋, ⋯ ), named by us as a pattern of 𝑙 = 2 × 2. This state is unexpectedly
stable among a wild range of parameters.

We analyze the linear stability matrix ℒ of these state with different coupling 𝑔, which controls
the stability of the system. The largest eigenvalue of ℒ is plotted in Figure A–1.
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Figure A–1 Max eigenvalue of ℒ

A linear stability matrix with eigenvalues larger than 0 means the system is not stable and will
leave the current state spontaneously, let along there is quantum fluctuations. Indicated by Figure A–
1, the system is unstable under some situations. For state with certain pattern, we predict that there
is a phase transition when changing 𝑔. And Section B.2 will focus on finding the transition.
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Appendix B Synchronization of Van der Pol lattice in
classical limit

According to[9], both quantum and classical Van der Pol oscillators have synchronization ef-
fect, which makes every oscillator’s phase locked. In this appendix, we are going to analyze the
synchronization effect of our Van der Pol model, which may give our some inspirations about the
architecture of time crystal.

𝐿 coupled Van der Pol oscillators are described by a master equation:

∂𝑡 ̂𝜌 = − 𝑖 [𝐻̂, ̂𝜌] +
𝐿−1

∑
𝑗=0 (𝐷𝑎𝑗 [ ̂𝜌] + 𝜅′

2 𝐷𝑎2
𝑗

[ ̂𝜌])

𝐻̂ =
𝐿−1

∑
𝑗=0 [

−𝛥 ̂𝑎†
𝑗 ̂𝑎𝑗 +

(
−𝑖 𝐹

√𝜅′
̂𝑎†
𝑗 + 𝐻.𝑐.

)
− 𝑔𝑐 ( ̂𝑎†

𝑗 ̂𝑎𝑗+1 + ̂𝑎†
𝑗+1 ̂𝑎𝑗)]

(B–1)

Classically, the system is described by a stochastic Langevin equation. In the equation, 𝜷 =
√𝜅′(𝛼0, 𝛼1, ⋯ , 𝛼𝐿−1)𝑇 . For simplicity, we add a complex noise 𝜼(𝜏) to the equation.

∂𝜏𝜷 =A(𝜷) + ℬ𝜼(𝜏)

A(𝜷) =
⎛
⎜
⎜
⎜
⎝

⋯
𝐹 + 𝛽𝑗 (𝑖𝛥 + 1 − |𝛽𝑗|

2
) + 𝑖𝑔 (𝛽𝑗−1 + 𝛽𝑗+1)

⋯

⎞
⎟
⎟
⎟
⎠

ℬ =
⎛
⎜
⎜
⎜
⎝

𝛾𝑐
⋯

𝛾𝑐

⎞
⎟
⎟
⎟
⎠

(B–2)

𝛾𝑐 ≠ 0 will introduce noises to the system, while 𝑔𝑐 ≠ 0 will synchronize the oscillators. If
all 𝛽𝑗 is at the same phase, they will evolve with limit cycles with an effective detuning 𝛥 + 2𝑔𝑐 .
Specifying 𝛥, 𝐹 and 𝑔𝑐4 determines the limit cycle.

B.1 Observables
To exhibit coupled Van der Pol oscillators are synchronized against noise, we selected two

observables: the average of 𝛽𝑗 over oscillators and the diffusion of phase.
First observable: | ̄𝛽| = 1

𝐿 |∑𝑗 𝛽𝑗|. Large average means they are in the synchronized phase
and small means they are with random phase.

Second observable: Variance of 𝜃𝑗 . In phase space, we define the phase of each oscillator
by setting a oscillating reference point 𝛽𝑟𝑒𝑓 (𝜏) on the limit cycle. Since each oscillator 𝛽𝑗 evolves
periodically on the limit cycle, we can always find a time 𝜃𝑗 that 𝛽𝑗(𝜏) = 𝛽𝑟𝑒𝑓 (𝜏 + 𝜃𝑗). To achieve
this, we first find the period 𝑇 of the limit cycle. Then we project the points (𝛽𝑗 in phase space) to
the effective limit cycle. With a initial 𝛽𝑟𝑒𝑓 point, we find the corresponding phase 𝜃𝑗 (0 < 𝜃𝑗 < 𝑇 ).
Then we analyze the variance and the average of the 𝜃𝑗 .
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B.2 Results
We check the synchronization effect with different parameters.

B.2.1 Disturbance and synchronization
When 𝛥2 = 0.3 and 𝐹 2 = 0.2, the system evolve in a limit cycle. The original system, noisy

system and the coupled noisy system are compared in Figure B–1. In the figure, we compare a noisy
system, a coupled noisy system and a reference, noiseless effective system. The noisy system has
𝛾𝑐 = 0.1 (orange line), and when turning on coupling, 𝑔𝑐 = 0.16 (green line). The noiseless effective
system has 𝑔𝑐 = 0 and 𝛾𝑐 = 0 (blue line). And there is 10 oscillators coupled together (𝐿 = 10) and
initialized to be synchronized (𝑙 = 1). In the figure, three sub-figures are plotted, which are about two
observables (| ̄𝛽| on the upper left, and var(𝜃𝑗) on the lower left) and phase space trajectories (right).
Clearly, |𝛽| of noisy oscillators converge to the average, and its variance of 𝜃𝑗 goes to saturation,
too. In contrast, coupled oscillator keeps in phase and remain same with the effective one. Moises
make oscillator de-phasing while coupled oscillators stay synchronized.

Figure B–1 Disturbance and synchronization.

I also display each of the 𝛽𝑗 in phase space in Figure B–2. Dots with the same color means they
are different oscillators on the ring at the same time, we displays oscillators at 7 different times. At
the same time, coupled oscillators have similar phases, and noisy ones distribute randomly. Also,
we find all dots evolve along the effective limit cycle (grey line).
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a) Noisy oscillators b) Coupled oscillators

Figure B–2 Classical phase distribution

B.2.2 Phase transition
Coupling coefficient 𝑔𝑐 have a strong effect on synchronization, because it directly controls

whether the state is steady. With previous parameter setting, 𝑔𝑐 ≈ 0.12 is the critical point. When
𝑔𝑐 > 0.12, 𝛽𝑗 starts to synchronize with each other and will not be disturbed by the noise. We show
a typical result in Figure B–3. We simulate the coupled system at 𝑔 = 0.1, 𝑔 = 0.13 and 𝑔 = 0.16,
all starting from a 𝑙 = 1 synchronized state.

Here we clearly observe a phase transition from Figure B–3a to Figure B–3b. When 𝑔 is smaller
than the critical point, the system is unstable and easily effected by noise, vise versa. Somrthing
very interesting is that, the system with low 𝑔 doesn’t just simply become noisy, but fall on another
patterns of synchronized state. In Figure B–3a, the final pattern it reaches is state with 𝑙 = 2.
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a) 𝛾𝑐 = 0.1, 𝑔𝑐 = 0.1.

b) 𝛾𝑐 = 0.1, 𝑔𝑐 = 0.13.

c) 𝛾𝑐 = 0.1, 𝑔𝑐 = 0.16.

Figure B–3 Varying coupling coefficient (𝐿 = 10)

B.2.3 Changing number of oscillators
As Figure B–4 shows, increasing 𝐿 from 10 to 100 makes the system more unstable, which

result from the increase of the critical point. When 𝐿 = 100, the critical point of 𝑔𝑐 increases to
about 0.13.
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a) 𝛾𝑐 = 0.1, 𝑔𝑐 = 0.13.

b) 𝛾𝑐 = 0.1, 𝑔𝑐 = 0.16.

c) 𝛾𝑐 = 0.1, 𝑔𝑐 = 0.20.

Figure B–4 Longer array of oscillators (𝐿 = 100)

This phase diffusion can also be visualized with scattering oscillators on the phase space in
Figure B–5. Compared with Figure B–2, dots are more dispersed with larger 𝐿.
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a) Noisy oscillators b) Coupled oscillators

Figure B–5 Dots with different colors represent 𝛽𝑗 at different time. (𝐿 = 100)

Besides, we visualize the phase fluctuation (𝜃𝑗 − 1
𝐿 ∑𝑗 𝜃𝑗) /𝑇 of each oscillators versus time in

Figure B–6. 𝜏 = 0 ∼ 50 and 𝜏 = 2000 ∼ 2050 are plotted in the figure. At the beginning, oscillators
are pulled by the noise and gradually depart from the average. After 𝜏 = 2000, these oscillators
evolve into a stable pattern, which has relative large fluctuation. This is because the oscillators are
only coupled with neighbors. Small differences will accumulate when the array becomes longer. I
believe, simply increasing 𝐿 may even harm the global synchronization for classical Van der Pol
oscillators. At least, we should introduce some remote connections.

Figure B–6 Classical phase diffusion
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